

25kHz LCR-Meter HM8018

Option HZ19 SMD Test Tweezers

Option HZ18 Kelvin Test Lead

Mainframe HM8001-2 required for Operation

- oxdot Measurement Functions: L, C, R, Θ , Q/D, |Z|
- ☑ Basic Accuracy 0.2%

- ☑ 2- and 4-Wire Measurement, parallel and serial Mode

25 kHz-LCR-Meter HM8018

All data valid at 23 °C after 30 minutes warm-up.

Measurement functions	
Measuring modes:	R, L, C, Θ, Q/D, Z
Equivalent circuits:	serial, parallel
Measuring method:	2-wire, 4-wire
Measuring ranges:	R: 0.001 Ω99.9 ΜΩ
	C: 0.001 pF99.9 mF
	L: 0.01 µH9,999 H
	Q: 0.000199.9
	D: 0.00019.9999
	Θ: (-180.00°)(+180.00°)
Basic accuracy:	0.2%
Measuring frequencies:	100 Hz, 120 Hz, 1 kHz, 10 kHz, 25 kHz
Freq. Accuracy:	±100 ppm (except 120 Hz: 120.2 Hz ±100 ppm)
Measuring voltage:	0.5 V _{rms} ±10 % (unloaded)
Measuring rate:	2 measurements/second
Range changing:	automatic, manual
DC Bias voltage:	1 V ±10 %
Zero setting:	Open/short circuit compensation
Compensation limits:	Short: R <10Ω
-	Ζ <15Ω
	Open: Z >10 kΩ

Measurement accuracy	
with D <0.1 or Q >10	C: $A_e = A_f \times A_d (1 + C_x/C_{max} + C_{min}/C_x)$
	L: $A_e = A_f \times A_d (1 + L_x/L_{max} + L_{min}/L_x)$
	$Z: A_e = A_f (1 + Z_x/Z_{max} + Z_{min}/Z_x)$
	$R: A_e = A_f \times A_d \left(1 + R_x / R_{max} + R_{min} / R_x \right)$
	$A_d = 1 \text{ for } D < 0.1$
with D ≥0.1	$A_{d} = \sqrt{1 + D^2}$
with the parameters	C_x , L_x , Z_x , R_x = Measurement value
	$A_f = 0.2\%$ at $f = 100 Hz$, 120 Hz, 1kHz
	$A_f = 0.3\%$ at $f = 10 \text{ kHz}$
	$A_f = 0.5\%$ at $f = 25 \text{ kHz}$
	$A_f = 0.5\%$ at $f = 25 \text{ kHz}$

Parameter	Auto Range
C_{max}	160 μF/f (f in kHz)
C_{min}	53 pF/f (f in kHz)
L _{max}	480 H/f (f in kHz)
L _{min}	0.16 mH/f (f in kHz)
Z _{max} , R _{max}	3 ΜΩ
Z _{min} , R _{min}	0.5 Ω

Dissipation factor accuracy:	
Quality factor accuracy:	$Q_e = \frac{Q_x^2 \cdot D_e}{1 \pm D_x \cdot D_e}$
Phase angle accuracy:	$\Theta_{\rm e} = \frac{180}{\pi} \cdot \frac{A_{\rm e}}{100}$

Display5-digits 7-Segment LEDs with sign **Display Parameters:**

Value

% Value Deviation % Offset **J**

Calculation from measurement value and

reference value stored

Miscellaneous

The inputs are short-circuit-proof and overvoltage protected up to $100\,V_{dc}$ with a maximum energy consumption of 1 J.

One configuration can be saved.

 $+5 V/300 \, mA$ Power supply (from mainframe): +5.2 V/50 mA -5.2 V/50 mA $(\sum = 2 \text{ W})$ +5...+40 °C

Operating temperature: -20...+70°C Storage temperature: Rel. humidity: 5...80% (non condensing)

Dimensions (W x H x D)

135 x 68 x 228 mm approx. 0.5 kg (without 22-pole flat plug): Weight:

Included in delivery: Operating manual, CD			
Recommended accessories:			
HZ10S	5 x silicone test lead (measurement connection in black)		
HZ10R	5 x silicone test lead (measurement connection in red)		
HZ10B	5 x silicone test lead (measurement connection in blue)		
HZ17	Kelvin test lead (4-wire) with probe tips		
HZ18	Kelvin test lead (4-wire) with gold plated contacts		
H719	Kelvin test lead (/-wire) with SMD-Test-tweezers		